
Jean Y. Ko, PhD,a,b Ashley H. Hirai, PhD,c Pamela L. Owens, PhD,d Carol Stocks, PhD, RN,e Stephen W. Patrick, MD MPHa,e

BACKGROUND AND OBJECTIVES: Hospital discharge records remain a common data source for tracking the opioid crisis among pregnant women and infants. The International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) transition from the International Classification of Diseases, Ninth Revision, Clinical Modification may have affected surveillance. Our aim was to evaluate this transition on rates of neonatal abstinence syndrome (NAS), maternal opioid use disorder (OUD), and opioid-related diagnoses (OUD with ICD-10-CM codes for long-term use of opioid analgesics and unspecified opioid use).

METHODS: Data from the 2013–2017 Healthcare Cost and Utilization Project’s National Inpatient Sample were used to conduct, interrupted time series analysis and log-binomial segmented regression to assess whether quarterly rates differed across the transition.

RESULTS: From 2013 to 2017, an estimated 18.8 million birth and delivery hospitalizations were represented. The ICD-10-CM transition was not associated with NAS rates (rate ratio [RR]: 0.99; 95% confidence interval [CI]: 0.90–1.08; P = .79) but was associated with 11% lower OUD rates (RR: 0.89; 95% CI: 0.80–0.98; P = .02) and a decrease in the quarterly trend (RR: 0.98; 95% CI: 0.96–1.00; P = .04). The transition was not associated with maternal OUD plus long-term use rates (RR: 0.98; 95% CI: 0.89–1.09; P = .76) but was associated with a 20% overall increase in opioid-related diagnosis rates including long-term and unspecified use (RR: 1.20; 95% CI: 1.09–1.32; P < .001).

CONCLUSIONS: The ICD-10-CM transition did not appear to affect NAS. However, coding of maternal OUD alone may not capture the same population across the transition, which confounds the interpretation of trend data spanning this time period.

ABSTRACT

www.hospitalpediatrics.org
DOI: https://doi.org/10.1542/hpeds.2021-005845
Copyright © 2021 by the American Academy of Pediatrics
Address correspondence to Jean Y. Ko, PhD, US Public Health Service and Centers for Disease Control and Prevention, 4770 Buford Hwy, Mailstop S107-2, Atlanta, GA 30341. E-mail: fob1@cdc.gov
HOSPITAL PEDIATRICS (ISSN Numbers: Print, 2154-1663; Online, 2154-1671).

FINANCIAL DISCLOSURE: The Agency for Healthcare Research and Quality sponsors the design and conduct of the Healthcare Cost and Utilization Project. The manuscript underwent clearance within the Agency for Healthcare Research and Quality, the Centers for Disease Control and Prevention, and the Health Resources and Services Administration before submission. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the US Department of Health and Human Services, Agency for Healthcare Research and Quality, Centers for Disease Control and Prevention, Health Resources and Services Administration or United States Public Health Service.

FUNDING: No external funding.

POTENTIAL CONFLICT OF INTEREST: Dr Patrick received funding from the National Institute on Drug Abuse, National Institute of Child Health and Human Development, the Robert Wood Johnson Foundation, the Boedeker Foundation, and the Center for
Cases of neonatal abstinence syndrome (NAS),1,2 often seen by pediatric hospitalists, and maternal opioid use disorder (OUD)3 dramatically increased from 2000 to 2014. Hospital discharge and administrative data remain the most common data sources for surveillance of these conditions across US jurisdictions4,5 and have been validated for NAS.6,7 On October 1, 2015, the transition to \textit{International Classification of Diseases, 10th Revision, Clinical Modification} (ICD-10-CM) expanded coding specificity (Table 1), including the introduction of codes to identify long-term (current) use of opioid analgesics and unspecified opioid use. In previous work, researchers documented that the ICD-10-CM transition was associated with increased opioid-related diagnoses in hospital discharges.8 We evaluated the rate of NAS among birth hospitalizations, as well as maternal OUD and maternal opioid-related diagnoses (OUD, long-term use, and unspecified opioid use), among delivery hospitalizations, from hospital discharge data from 2013 to 2017 by quarter, to understand whether the ICD-10-CM transition disrupted trends for NAS and maternal OUD.

METHODS

Data Source

In this analysis, we used data from the National Inpatient Sample (NIS)9 of the Agency for Healthcare Research and Quality’s Healthcare Cost and Utilization Project (HCUP). The NIS includes a 20% stratified sample of all-payer discharge data from community non–rehabilitation hospitals in participating states, covering >97% of the US population. The NIS is weighted to be nationally representative of all hospitalizations within community non–rehabilitation hospitals. As a secondary analysis of anonymized data, this project was not required to undergo institutional review board approval.

Outcomes

NAS was identified among birth hospitalizations by the \textit{International Classification of Diseases, Ninth Revision, Clinical Modification} (ICD-9-CM) diagnosis code 779.5 (drug withdrawal syndrome in newborn) excluding possible iatrogenic withdrawal and ICD-10-CM diagnosis code P96.1 (neonatal withdrawal symptoms from maternal use of drugs of addiction) (Table 1). Possible iatrogenic exclusions in the ICD-9-CM are no longer necessary in the ICD-10-CM with the introduction of P96.2 (withdrawal symptoms from therapeutic use of drugs in newborn). Among delivery hospitalizations, maternal opioid-related cases were identified and categorized according to coding guidance (Table 1).10–12 OUD was identified from diagnoses of opioid dependence and nondependent abuse, aligning with \textit{Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition} criteria.10 Long-term (current) use of opioid analgesics and unspecified opioid use were identified only in the ICD-10-CM coding scheme because these diagnosis codes did not exist in the ICD-9-CM. Coding guidance indicates that unspecified opioid use from 2013 to 2017 by quarter, to understand whether the ICD-10-CM transition disrupted trends for NAS and maternal OUD.

METHODS

Data Source

In this analysis, we used data from the National Inpatient Sample (NIS)9 of the Agency for Healthcare Research and Quality’s Healthcare Cost and Utilization Project (HCUP). The NIS includes a 20% stratified sample of all-payer discharge data from community non–rehabilitation hospitals in participating states, covering >97% of the US population. The NIS is weighted to be nationally representative of all hospitalizations within community non–rehabilitation hospitals. As a secondary analysis of anonymized data, this project was not required to undergo institutional review board approval.

Outcomes

NAS was identified among birth hospitalizations by the \textit{International Classification of Diseases, Ninth Revision, Clinical Modification} (ICD-9-CM) diagnosis code 779.5 (drug withdrawal syndrome in newborn) excluding possible iatrogenic withdrawal and ICD-10-CM diagnosis code P96.1 (neonatal withdrawal symptoms from maternal use of drugs of addiction) (Table 1). Possible iatrogenic exclusions in the ICD-9-CM are no longer necessary in the ICD-10-CM with the introduction of P96.2 (withdrawal symptoms from therapeutic use of drugs in newborn).

Among delivery hospitalizations, maternal opioid-related cases were identified and categorized according to coding guidance (Table 1).10–12 OUD was identified from diagnoses of opioid dependence and nondependent abuse, aligning with \textit{Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition} criteria.10 Long-term (current) use of opioid analgesics and unspecified opioid use were identified only in the ICD-10-CM coding scheme because these diagnosis codes did not exist in the ICD-9-CM. Coding guidance indicates that unspecified opioid use

TABLE 1 NAS, Maternal Opioid-Related, Birth, and Delivery Hospitalization Codes

<table>
<thead>
<tr>
<th></th>
<th>ICD-9-CM Codes</th>
<th>ICD-10-CM/PCS Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS</td>
<td>[iatrogenic exclusion codes: 765.00–765.05, 770.7, 772.1x, 777.5x, 777.6, 779.7]</td>
<td>P96.1 (iatrogenic exclusions no longer necessary with P96.2)</td>
</tr>
<tr>
<td>OUD</td>
<td>304.00–304.02, 304.70–304.72</td>
<td>F11.20, F11.22–11.29</td>
</tr>
<tr>
<td>Long-term (current) use of opioid analgesics</td>
<td>—</td>
<td>Z79.881</td>
</tr>
<tr>
<td>Birth hospitalizations</td>
<td>V30.XX–V39.XX ending in 00 or 01, or 1*</td>
<td>Z38.00, Z38.01, Z38.1, Z38.2, Z38.30, Z38.31, Z38.4, Z38.5, Z38.61–Z38.66, Z38.68, Z38.69, Z38.7, Z38.8</td>
</tr>
<tr>
<td>Delivery hospitalizations</td>
<td>V27, 650, 669.70, 669.71</td>
<td>Z37, 080, 082, 075.82</td>
</tr>
<tr>
<td>Procedure codes</td>
<td>720, 721, 7221, 7229, 7231, 7239, 724, 7251, 7252, 7253, 7254, 726, 7271, 7279, 728, 729, 7322, 7359, 736, 740, 741, 742, 744, 7499</td>
<td>1000020-1000022, 10D00ZZ-0D0078, 10D00ZZ</td>
</tr>
<tr>
<td>Exclusion diagnosis codes</td>
<td>630–639</td>
<td>000, 001, 002, 003, 004, 007, 008</td>
</tr>
<tr>
<td>Exclusion procedure codes</td>
<td>6901, 6951, 7491, 750</td>
<td>10A00ZZ, 10A03ZZ, 10A04ZZ, 10A07Z6, 10A07ZW, 10A07WX, 10A07ZX, 10A07ZZ, 10A08ZZ</td>
</tr>
</tbody>
</table>
Analysis

An interrupted time series analysis was conducted that included both visual inspection of rates and regression analysis. Rates of NAS (cases per 1000 birth hospitalizations) and maternal OUD (cases per 1000 delivery hospitalizations) were calculated and plotted by quarter for 2013–2017. These data years were selected to center on the ICD-10-CM transition with 2 full years before and after. Quarterly rates were also calculated and plotted for maternal outcomes only available in the ICD-10-CM (for 2015 quarter 4 [Q4] to 2017 Q4): maternal long-term use of opioid analgesics, unspeciﬁed opioid use diagnoses, OUD plus long-term use of opioid analgesics, and all maternal opioid-related diagnoses (maternal OUD, long-term [current] use of opioid analgesics, and unspeciﬁed opioid use). Potential seasonality was controlled with dummy variables for quarter, and standard errors accounted for the complex sampling by using the SVY command in Stata (Stata Corp, College Station, TX). A 2-sided P value of <.05 was considered statistically significant.

RESULTS

From 2013 to 2017, 3.8 million sampled birth and delivery hospitalizations were weighted to represent an estimated 18.8 million birth and delivery hospitalizations. The ICD-10-CM transition was not associated with a change in NAS rates (rate ratio [RR]: 0.99; 95% conﬁdence interval [CI]: 0.90–1.08; P = .79; Fig 1). However, the ICD-10-CM transition was associated with an 11% decrease in maternal OUD rates (RR: 0.89; 95% CI: 0.80–0.98; P = .02; Fig 2) and a 2.3% decrease in the quarterly trend (RR: 0.98; 95% CI: 0.96–1.00; P = .04).

When adding long-term use to OUD, the ICD-10-CM transition was not associated with changes in rates (RR: 0.98; 95% CI: 0.89–1.08; P = .76). However, when adding unspeciﬁed use to OUD and long-term opioid use, a 20% rise in maternal opioid-related codes was observed (RR: 1.20; 95% CI: 1.09–1.32; P < .001).

DISCUSSION

In this analysis of nationally representative hospital discharge data, the ICD-10-CM transition was not associated with changes in NAS rates as represented by ICD coding but was associated with lower rates of maternal OUD and a disruption in observed OUD trends. The introduction of long-term (current) use of opioid analgesics appeared to have contributed to shifts in patients identiﬁed with diagnosis codes used for OUD documented at delivery hospitalization, similar to an analysis of general members of commercial health insurance. Although coding guidance does not suggest medications for OUD be coded as long-term (current) use of opioid analgesics, these codes may be useful in broadly understanding exposures that contribute to a diagnosis of NAS. Furthermore, the unspeciﬁed opioid use codes captured an additional 20% of patients with opioid-related exposures that may be of interest. Conversely, although the ICD-10-CM introduced the ability to differentiate iatrogenic withdrawal, this coding change was not associated with NAS rates.

NAS is an indicator used by multiple federal agencies (including the Agency for Healthcare Research and Quality, the Centers for Disease Control and Prevention, and the Health Resources and Services Administration) as well as state public health agencies to understand the burden of the opioid crisis on maternal and child health. To aid in standardization, the Council for State and Territorial Epidemiologists, an organization of member states and territories representing public health epidemiologists, proposed standard NAS surveillance deﬁnitions. Our ICD-10-CM definitions align with this new guidance for administrative billing or claims data.
This analysis has a few limitations. First, we cannot confirm whether the same exact cases would be identified in both the ICD-9-CM and ICD-10-CM because cases were identified by using different coding schemes. Additionally, uptake and use of the ICD-10-CM codes may vary by hospital and state. There have been many initiatives at the hospital, local, state, and federal level to better provide quality coordinated care for pregnant and postpartum women with OUD and their infants. We are unable to ascertain whether improved recognition or true prevalence changes of these conditions influenced the observed trend over the ICD-10-CM transition.

The ICD-10-CM provides additional codes to monitor opioid-related diagnoses for pregnant women and infants. Trend analyses covering the ICD-10-CM transition should acknowledge that both OUD and NAS algorithms had important changes in relevant codes. The ICD-10-CM transition did not appear to affect NAS. However, coding of maternal OUD alone may not capture the same population across the ICD transition, which confounds interpretation of trend data spanning this time period.

Acknowledgments
We acknowledge the 48 HCUP Partner organizations that contributed to the HCUP NIS used in this analysis: Alaska Department of Health and Social Services; Arizona Department of Health Services; Arkansas Department of Health; California Office of Statewide Health Planning and Development; Colorado Hospital Association; Connecticut Hospital Association; Delaware Division of Public Health; District of Columbia Hospital Association; Florida Agency for Health Care Administration; Georgia Hospital Association; Hawaii Laulima Data Alliance, a subsidiary of the Healthcare Association of Hawaii (and Hawaii Health Information Corporation); Illinois Department of Public Health; Indiana Hospital Association; Iowa Hospital Association; Kansas Hospital Association; Kentucky Cabinet for Health and Family Services; Louisiana Department of Health; Maine Health Data Organization; Maryland Health Services Cost Review Commission; Massachusetts Center for Health Information and Analysis; Michigan Health & Hospital Association; Minnesota Hospital Association; Mississippi State Department of Health; Missouri Hospital Association; Nevada Hospital Association; New York State Health Foundation; New York State Office of Mental Health; North Carolina Institute for Health Quality; Ohio Department of Health; Oregon Health Authority; Pennsylvania Hospital Association; Pennsylvania Health Data Organization; Pennsylvania Office of Rural Health; Rhode Island Hospital Association; South Carolina Hospital Association; Tennessee Hospital Association; Texas Hospital Association; Utah Hospital Association; Washington State Hospital Association; Wisconsin Hospital Association; and Wyoming Hospital Association.
FIGURE 2 Quarterly rates with 95% CIs and predicted rates from segmented regression models for maternal opioid-related diagnoses from 2013 to 2017, allowing discontinuities in intercepts and slopes with the ICD-10-CM transition in 2015 Q4. Q, quarter.

Industry Data Institute; Montana Hospital Association; Nebraska Hospital Association; Nevada Department of Health and Human Services; New Jersey Department of Health; New Mexico Department of Health; New York State Department of Health; North Carolina Department of Health and Human Services; North Dakota (data provided by the Minnesota Hospital Association); Ohio Hospital Association; Oklahoma State Department of Health; Oregon Association of Hospitals and Health Systems; Pennsylvania Health Care Cost Containment Council; Rhode Island Department of Health; South Carolina Revenue and Fiscal Affairs Office; South Dakota Association of Healthcare Organizations; Tennessee Hospital Association; Texas Department of State Health Services; Utah Department of Health; Vermont Association of Hospitals and Health Systems; Virginia Health Information; Washington State Department of Health; West Virginia Health Care Authority; Wisconsin Department of Health Services; and Wyoming Hospital Association.

We acknowledge Marguerite Barrett, MS (ML Barrett, Inc, subcontractor to IBM Watson Health), and Minya Sheng, MS (IBM Watson Health), for assistance in programming and data management and Rui Li, PhD (Centers for Disease Control and Prevention at the time of preparation), and Sarah Haight, MPH (Centers for Disease Control and Prevention at the time of preparation), for their statistical and analytic consult.
Medicare and Medicaid Services Innovation Center unrelated to this project. The other authors have indicated they have no potential conflicts of interest to disclose.

Dr Ko contributed to the study concept and design, conducted acquisition, analysis, and interpretation of data, and led writing and editing of the manuscript; Dr Hirai contributed to the study concept and design, conducted acquisition, analysis, and interpretation of data, provided critical revision of the manuscript for important intellectual content, Dr Owens, contributed to the study concept and design, conducted acquisition, analysis, and interpretation of data, had full access to all the data, takes responsibility for the integrity of the data and accuracy of data analysis, and provided critical revision of the manuscript for important intellectual content; Dr Stocks contributed to the study concept and design, conducted interpretation of data, and provided critical revision of the manuscript for important intellectual content; Dr Patrick contributed to the study concept and design, conducted interpretation of data, provided critical revision of the manuscript for important intellectual content, Dr Stocks’ current affiliation is the Health Sciences Center, School of Public Health, West Virginia University, Morgantown, WV.

REFERENCES

Jean Y. Ko, Ashley H. Hirai, Pamela L. Owens, Carol Stocks and Stephen W. Patrick
Hospital Pediatrics 2021;11;902
DOI: 10.1542/hpeds.2021-005845 originally published online July 28, 2021;

Updated Information & Services
ing including high resolution figures, can be found at:
http://hospps.aappublications.org/content/11/8/902

Supplementary Material
Supplementary material can be found at:

References
This article cites 13 articles, 2 of which you can access for free at:
http://hospps.aappublications.org/content/11/8/902#BIBL

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Billing & Coding
http://www.hospps.aappublications.org/cgi/collection/billing__coding_sub
Neonatology
http://www.hospps.aappublications.org/cgi/collection/neonatology_sub
Substance Abuse
http://www.hospps.aappublications.org/cgi/collection/substance_abuse_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.hospps.aappublications.org/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
http://www.hospps.aappublications.org/site/misc/reprints.xhtml
Jean Y. Ko, Ashley H. Hirai, Pamela L. Owens, Carol Stocks and Stephen W. Patrick
Hospital Pediatrics 2021;11:902
DOI: 10.1542/hpeds.2021-005845 originally published online July 28, 2021;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hosppeds.aappublications.org/content/11/8/902