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Basic Statistics for Comparing Categorical Data
From 2 or More Groups
Matt Hall, PhD, Troy Richardson, PhD

In both clinical research and quality improvement, it is commonplace to compare groups of patients (eg, treatment
versus control, pre versus post, hospital A versus hospital B) on a variety of characteristics. These characteristics
usually take the form of (1) continuous data with comparisons made with t tests (for normal distributions) or
Wilcoxon rank-sum tests (for nonnormal distributions) or (2) categorical data. Continuous data are data that
can take almost any numeric value within a given range and can be subdivided into smaller and smaller increments
without losing the meaning associated with the data. Examples of continuous data commonly found in health
care include age, height, weight, temperature, or cost. Categorical data, as the name suggests, can be put into
nonoverlapping categories, groups, or classes. Some examples of categorical data that frequently occur in
health care are gender, disposition, and skill level (eg, RN, LPN, AHT). Antibiotic receipt, chest radiograph
receipt, or admission from the emergency department also qualify because they can be categorized into “yes”
or “no” responses. As long as people cannot be classified in .1 group, you are likely dealing with categorical
data. There is, however, a special type of categorical data that is treated a little differently from the data we
discuss in this article, and it is somewhere between categorical and continuous. It too can be put into
nonoverlapping categories, but the categories have a logical ordering or sequence. This is called ordinal data,
and a Likert scale commonly used on surveys (1 5 strongly disagree, 2 5 disagree, 3 5 neutral, 4 5 agree,
5 5 strongly agree) is an example. Although experts do not always agree on the best approach to analyze
ordinal data, it generally requires a different approach from the categorical data that we discuss in this here.

Knowing what type of data you have is always the first step in any analytical silique because it dictates the
statistical approach that is taken. However, regardless of the type of data you are dealing with, our aim is to
understand if our groups are different with respect to some characteristics. In the context of hospital quality,
we may want to compare our hospital’s rate of an event (eg, adverse drug events for ICU patients) with another
hospital’s rate to see whether we have an opportunity for improvement. Or we may need to compare our hospital’s
30-day readmission rate before and after an intervention to determine if the intervention was successful.

In the context of a comparative effectiveness or randomized controlled study, comparisons like this are useful
to assess the balance of the cohorts on key characteristics before analyzing the outcome. For example, if we determine
that female patients were significantly more likely to receive one of the treatments, then we need to take this
into account when comparing the effectiveness of the treatments. Otherwise, the comparison of the effectiveness
may be confounded (ie, ignoring a variable that is related to both the dependent and independent variables). Different
approaches to mitigate the effect of confounding are available and include stratifying the analysis, multivariable
modeling, and matching through propensity scores or other means. In this article, we discuss how to compare
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categorical data from $2 groups to detect
these important differences.

SUMMARIZING AND
ORGANIZING THE DATA

One common way of summarizing
categorical data are to use proportions (or
percent if we multiply the proportion by 100).
Suppose we want to compare the proportion
of patients in our hospital’s ICU that
experience an adverse drug event (ADE) with
that of another hospital’s ICU. In our hospital,
20 of 180 patients experienced an ADE
(20/1805 11.1%), whereas in another hospital,
25 of 155 patients (16.1%) experienced an ADE.
It looks like these percentages are different
(11.1% vs 16.1%), but do we have enough
evidence to conclude that they are really
different and not due to random chance? To
get a better sense for whether the observed
differences are due to random chance, we
will perform a hypothesis test.

To facilitate our hypothesis test, we need to
organize the data into a contingency table
(ie, an r 3 c table where r is the number
of rows corresponding to the number of
levels for the categorical variable and c is
the number of columns corresponding to
the number of comparison groups). In our
example, the data can be organized into a
2 3 2 table with 2 rows (experienced an
ADE: yes vs no) and 2 columns (hospital A
and hospital B) as in Table 1.

THE HYPOTHESIS TEST

We would like to know whether the
proportion of ICU patients experiencing ADEs
is the same at our hospital compared with
the other hospital. In statistical terminology,
we are testing the following hypotheses:

Null hypothesisðH0Þ: pHospital A5pHospital B

Alternative hypothesisðH1Þ:
pHospital A�pHospital B

where p represents the proportion of ICU
patients experiencing an ADE. In statistical
testing, we always assume that the null

hypotheses is true and then determine if we
have enough evidence from the data to reject
the null in favor of the alternative hypothesis.
In other words, we assume the proportion
of ICU patients experiencing an ADE at the 2
hospitals is the same until we have sufficient
evidence from the data to conclude otherwise.

TYPES OF TESTS

Generally, 2 main tests are used for
comparing categorical data across
$2 groups: x2 test1 (sometimes referred to
as Pearson’s x2 test of independence) and
Fisher’s exact test.2 The development of
the x2 test is fairly intuitive. At a high level,
we decide how the data would look in our
table if the null hypothesis was true (ie,
the 2 proportions were equal) and then
measure how far off the actual data are
from these expected counts. By default,
most statisticians use the x2 test because
it performs well under most circumstances.
However, the validity of the test can come
into question when you have small observed
numbers in the cells of your table. If this
is the case, then you should consider using
Fisher’s exact test.

CALCULATING EXPECTED CELL
COUNTS

If the null hypothesis is true and the
proportions are equal, then we can
calculate the counts that we would expect
to see in the 4 cells of our table. We can
do this by using the total count of cases
that we are trying to redistribute (335 in our
example), and the marginal proportions
displayed in Table 2. To determine the
expected number of patients who experienced
an ADE in Hospital A (ie, the upper left cell

of the table), we simply take the overall
population size (335) and multiply it by the
proportion of patients who we expect in
Hospital A (0.5373) and the proportion of all
patients who we would expect to experience
an ADE (0.1343). That is, of the 335 patients,
we expect 53.73% to be in Hospital A and
13.43% of patients to experience an ADE
(335 3 0.5373 3 0.1343 5 27.18 patients).
Similar calculations are performed for
each of the cells until the expected table is
completed, as in Table 3. Notice that the
marginal totals are exactly as they were in
the original Table 1 but that the percentage
of patients in each hospital experiencing an
ADE is now equal (24.18/180 5 13.4% and
20.82/155 5 13.4%).

MEASURING OBSERVED FROM
EXPECTED

We now know what the table would have
looked like if the null hypothesis was true
and the proportions were equal (ie, the
expected in Table 3), and we know what the
data actually looked like (ie, the observed in
Table 1). Next, we measure how far the
observed was from what was expected
and decide if we have enough evidence to
reject the null hypothesis. To do this, we
calculate the following measure for each cell:

ðObserved2 ExpectedÞ2
Expected

and then sum them to form the x2 statistic:
X2 5 0:7221 0:8391 0:1121 0:1305 1:803

STATISTICAL SIGNIFICANCE

Finally, we need to determine if the Χ2 we
calculated is “large enough” to reject the
null hypothesis. This is why we need to
compute a P value. It tells us the probability
of getting a test statistic (Χ2) at least this
extreme, assuming that the null hypothesis
is true. The test statistic has a x2

distribution, so we compare the value we
calculated for Χ2 to a x2 distribution. One of
the nuances of the x2 distribution is that
you need to know the degrees of freedom

TABLE 1 Observed Counts of ADEs in 2 Hospitals

Hospital A Hospital B Total

Experienced an ADE 20 25 45

Did not experience an ADE 160 130 290

Total 180 155 335

TABLE 2 Observed Counts of ADEs in 2 Hospitals With Marginal Proportions

Hospital A Hospital B Total (Column Proportion)

Experienced an ADE 20 25 45 (0.1343)

Did not experience an ADE 160 130 290 (0.8657)

Total (row proportion) 180 (0.5373) 155 (0.4627)
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(df; ie the number of data points available to
estimate a parameter of the population) for
the test statistic. For the x2 test, the df is
(number of rows – 1) 3 (number of
columns – 1). For a 2 3 2 table, the df 5 1.
Comparing our Χ2 5 1.803 to the x2

distribution with df 5 1 [using an online
calculator like Social Science Statistics:
http://www.socscistatistics.com/tests/
chisquare/default2.aspx or the EXCEL
function 5 1-CHISQ.DIST(1.803,1,TRUE)],
we get P 5 .179. Here, the probability of
getting a test statistic at least as extreme
as the one we calculated is rather high
(P . .05), so we fail to reject the null
hypothesis and conclude that the proportion
of patients experiencing ADEs between
hospital A (11.1%) and hospital B (15.6%) are
not significantly different.

FISHER’S EXACT TEST

When you have cells in your table where the
expected count is ,5, you should be
cautious of using the x2 test and instead use
Fisher’s exact test to be more conservative.
Most statistical packages will give you a
warning that the x2 test may be invalid and
also compute Fisher’s exact test for you.
Although it is valid for all sample sizes,
computing Fisher’s exact test is substantially
more mathematically involved than doing a
x2 test and computationally challenging with
tables beyond 2 3 2. Although programming
is a bit tricky in Excel, there are online
calculators such as Social Science Statistics
(http://www.socscistatistics.com/tests/
fisher/default2.aspx) that can be used to
calculate Fisher’s exact test.

Fisher developed his test as part of the
classic “lady tasting tea” experiment that he
proposed with Muriel Bristol, who claimed
that she could tell if milk was added to a

cup before or after her tea. He proposed a
randomized experiment with 8 cups of tea
(4 with the milk added first, and 4 with the
tea added first) given to her in random
order. He described his exact test using
probability calculations to determine the
likelihood that she was simply guessing. She
supposedly got them all correct, and the
likelihood of getting them all correct if she
was guessing was 1.4%. He describes the
experiment in his classic book on the design
of experiments.3

EXPANDING TO TABLES LARGER
THAN 232

The x2 test can easily be generalized to
tables with .2 rows and/or 2 columns.
The steps involved and the computations
are nearly identical with the appropriate
changes made to the df for the number
of rows and columns. Table 4 shows a
comparison of 30-day asthma readmission
rates across 3 hospitals. In this case, the x2

test is evaluating whether the distribution
across the 3 hospitals is the same or not.
The P 5 .009 indicates that there are
significant differences across the hospitals,
but it does not necessarily tell us where
these differences occur. To determine where
these differences exist, we can break the
table into three 2 3 2 tables and do
pairwise comparisons. The first 2 3 2 table
would compare Hospital A versus Hospital B
(P 5 .002), the second would compare
Hospital B versus Hospital C (P 5 .488), and
the last would compare Hospital A versus
C (P 5 .023). A little caution is necessary
when performing pairwise comparisons. By
doing 3 statistical tests on the 2 3 2 tables,
you are increasing your likelihood of coming
to an erroneous conclusion by committing a
type I error (ie, erroneously rejecting a true

null hypothesis of equal proportions). One
easy way to protect from this is by doing a
Bonferroni correction,4 which reduces the
significance level for each individual test
from the traditional P5 .05 level, and shares
this across the multiple tests. Because we
are performing 3 tests, we would reduce the
significance level to 0.05/3 5 0.017 for each
test. With this new level of significance, we
would conclude that Hospitals A and B are
statistically different, but none of the
other pairs are. Although the Bonferroni
correction can be overly conservative, it is
intuitive and easy to perform. Another
common approach is to control for the false
discovery rate (ie, the expected proportion of
tests that reject the null hypothesis
erroneously) using the Benjamini-Hochberg
procedure.5

CONCLUSIONS

It is important to understand how
populations differ on baseline characteristics
before assessing outcomes so that these
differences can be accounted for
appropriately in the analysis. The x2 test is
an intuitive test that is easy to calculate, and
it is useful for comparing proportions across
groups for categorical variables. With this
test, you can decide if there are important
differences that may confound your results
and take appropriate steps to avoid this.
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TABLE 3 Expected Counts of ADEs in 2 Hospitals

Hospital A Hospital B Total

Experienced an ADE 24.18 20.82 45

Did not experience an ADE 155.82 134.18 290

Total 180 155

TABLE 4 Comparison of 30-Day Asthma Readmission Rates Across 3 Hospitals

Hospital A, n (%) Hospital B, n (%) Hospital C, n (%) P

No readmission 701 (96.6) 810 (93.1) 625 (94.0) .009

Readmission 25 (3.4) 60 (6.9) 40 (6.0)
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